目录
Comparable && Comparator的使用:
Comparable:
Comparator:
Arrays.sort()的使用:
升序排序:
降序排序:
自定义排序方法:
在日常的刷题或开发中,很多时候我们需要对数据进行排序,以达到我们的预期效果的作用。那么这些排序方法具体怎么实现和使用呢?本文就来好好缕一缕,总结一下这些方法:
Comparable && Comparator的使用:
Comparable:
当我们对类中的对象进行比较时,要保证对象时可比较的,这时我们就需要用到Comparable 或 Comparator接口,然后重写里面的compareTo()方法。假设我们有一个学生类,默认需要按照学生的年龄age排序,具体实现如下:
class Student implements Comparable<Student>{
public Student(int id, int age, String name) {
public int compareTo(Student o) {
//return o.age - this.age;
public void setId(int id) {
public void setAge(int age) {
public String getName() {
public void setName(String name) {
public String toString() {
这里说一下 public int compareTo(Student o) 方法,它返回三种 int 类型的值: 负整数,零 ,正整数:
返回值含义正整数当前对象的值 > 比较对象的值,升序排序零当前对象的值 = 比较对象的值,不变负整数当前对象的值 < 比较对象的值,降序排序
测试:
public static void main(String[] args) {
List<Student> list = new ArrayList<>();
list.add(new Student(103,25,"关羽"));
list.add(new Student(104,21,"张飞"));
list.add(new Student(108,18,"刘备"));
list.add(new Student(101,32,"袁绍"));
list.add(new Student(109,36,"赵云"));
list.add(new Student(103,16,"曹操"));
System.out.println("排序前:");
for(Student student : list){
System.out.println(student.toString());
System.out.println("默认排序后:");
for(Student student : list){
System.out.println(student.toString());
运行结果:
Student{id=103, age=25, name=关羽}
Student{id=104, age=21, name=张飞}
Student{id=108, age=18, name=刘备}
Student{id=101, age=32, name=袁绍}
Student{id=109, age=36, name=赵云}
Student{id=103, age=16, name=曹操}
Student{id=103, age=16, name=曹操}
Student{id=108, age=18, name=刘备}
Student{id=104, age=21, name=张飞}
Student{id=103, age=25, name=关羽}
Student{id=101, age=32, name=袁绍}
Student{id=109, age=36, name=赵云}
Comparator:
Comparator的两种使用方法:
Collections.sort(list,Comparator<T>);list.sort(Comparator<T>);
这个时候需求又来了,默认是用 age 排序,但是有的时候需要用 id 来排序怎么办? 这个时候比较器 :Comparator 就排上用场了:
//自定义排序:使用匿名内部类,实现Comparator接口,重写compare方法
Collections.sort(list, new Comparator<Student>() {
public int compare(Student o1, Student o2) {
return o1.getId() - o2.getId();
list.sort(new Comparator<Student>() {
public int compare(Student o1, Student o2) {
return o1.getId() - o2.getId();
compare(Student o1, Student o2) 方法的返回值跟 Comparable<>接口的 compareTo(Student o)方法返回值意思相同
运行结果:
Student{id=101, age=32, name=袁绍}
Student{id=103, age=16, name=曹操}
Student{id=103, age=25, name=关羽}
Student{id=104, age=21, name=张飞}
Student{id=108, age=18, name=刘备}
Student{id=109, age=36, name=赵云}
源码:
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
class Student implements Comparable<Student>{
public Student(int id, int age, String name) {
public int compareTo(Student o) {
//return o.age - this.age;
public void setId(int id) {
public void setAge(int age) {
public String getName() {
public void setName(String name) {
public String toString() {
public static void main(String[] args) {
List<Student> list = new ArrayList<>();
list.add(new Student(103,25,"关羽"));
list.add(new Student(104,21,"张飞"));
list.add(new Student(108,18,"刘备"));
list.add(new Student(101,32,"袁绍"));
list.add(new Student(109,36,"赵云"));
list.add(new Student(103,16,"曹操"));
System.out.println("排序前:");
for(Student student : list){
System.out.println(student.toString());
System.out.println("默认排序后:");
for(Student student : list){
System.out.println(student.toString());
//自定义排序:使用匿名内部类,实现Comparator接口,重写compare方法
Collections.sort(list, new Comparator<Student>() {
public int compare(Student o1, Student o2) {
return o1.getId() - o2.getId();
System.out.println("自定义ID排序后:");
for(Student student : list){
System.out.println(student.toString());
list.sort(new Comparator<Student>() {
public int compare(Student o1, Student o2) {
return o1.getId() - o2.getId();
Arrays.sort()的使用:
升序排序:
1.正常排序一个数组:Arrays.sort(int [] a);
我们看一下源码:
public static void sort(int[] a) {
DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
本质上还是用到了快排,同时默认时从小到大进行排序的,具体实现:
public static void main(String[] args) {
//1.Arrays.sort(int[] a) 默认从小到达排序
int[] a = new int[]{10,2,7,8,9,15,7};
System.out.println("默认时从小到大排序:");
for(int x : a) System.out.print(x + " ");
运行结果:
2.在一定区间内排序数组:Arrays.sort(int[] a, int fromIndex, int toIndex)
->规则为从fromIndex<= a数组 <toIndex,左闭右开
public static void main(String[] args) {
//2.Arrays.sort(int[] a, int fromIndex, int toIndex)
//规则为从fromIndex<= a数组 <toIndex
int[] a = new int[]{2,5,4,1,19,3,2};
for(int x : a) System.out.print(x + " ");
降序排序:
实现方法:Collections.reverseOrder()
public static <T>
void sort(T[] a,int fromIndex, int toIndex, Comparator<? super T> c)
要实现降序排序,得通过包装类型的数组来实现,基本数据类型数组是不行的:
正确用法:
//2.java自带的Collections.reverseOrder() 降序排序数组
System.out.println("java自带的Collections.reverseOrder():");
Integer[] integers = new Integer[]{10, 293, 35, 24, 64, 56};
Arrays.sort(integers, Collections.reverseOrder());
for (Integer integer : integers) System.out.print(integer + " ");
运行结果:
java自带的Collections.reverseOrder():
自定义排序方法:
自定义排序方法,需要实现java.util.Comparetor 接口中的compare方法
//3.自定义排序方法,实现java.util.Comparetor 接口中的compare方法
Integer[] integers2 = new Integer[]{10, 293, 35, 24, 64, 56};
Arrays.sort(integers2, new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
System.out.println("自定义排序方法:");
for (int x : integers2) System.out.print(x + " ");
运行结果:
同时,我们可以用lambda表达是简化书写:
Integer[] integers3 = new Integer[]{10, 293, 35, 24, 64, 56};
Arrays.sort(integers3, (o1, o2) -> {
System.out.println("lambda表达式简化书写:");
for (int x : integers3) System.out.print(x + " ");
运行结果:
源码:
public static void main1(String[] args) {
//1.Arrays.sort(int[] a) 默认从小到达排序
int[] a = new int[]{10,2,7,8,9,15,7};
System.out.println("默认时从小到大排序:");
for(int x : a) System.out.print(x + " ");
public static void main2(String[] args) {
//2.Arrays.sort(int[] a, int fromIndex, int toIndex)
//规则为从fromIndex<= a数组 <toIndex
int[] a = new int[]{2,5,4,1,19,3,2};
for(int x : a) System.out.print(x + " ");
public static void main3(String[] args) {
/* //1.实现降序排序,基本的数据类型数组是不行的
int[] a = new int[]{10,293,35,24,64,56};
Arrays.sort(a,Collections.reverseOrder());
for(int x : a) System.out.println(x + " ");*/
//2.java自带的Collections.reverseOrder() 降序排序数组
System.out.println("java自带的Collections.reverseOrder():");
Integer[] integers = new Integer[]{10, 293, 35, 24, 64, 56};
Arrays.sort(integers, Collections.reverseOrder());
for (Integer integer : integers) System.out.print(integer + " ");
System.out.println("===================================");
//3.自定义排序方法,实现java.util.Comparetor 接口中的compare方法
Integer[] integers2 = new Integer[]{10, 293, 35, 24, 64, 56};
Arrays.sort(integers2, new Comparator<Integer>() {
public int compare(Integer o1, Integer o2) {
System.out.println("自定义排序方法:");
for (int x : integers2) System.out.print(x + " ");
System.out.println("===================================");
Integer[] integers3 = new Integer[]{10, 293, 35, 24, 64, 56};
Arrays.sort(integers3, (o1, o2) -> {
System.out.println("lambda表达式简化书写:");
for (int x : integers3) System.out.print(x + " ");
补充,二维数组的排序:通过实现Comparator接口来自定义排序二维数组,以下面为例:
import java.util.Comparator;
class Cmp implements Comparator<int[]>{
public int compare(int[] o1, int[] o2) {
public static void main123(String[] args) {
int[][] res = new int[][]{
//自定义排序二维数组,这里是按照每行第一个数字进行排序
Arrays.sort(res,new Cmp());
for(int i = 0;i < res.length;i++){
for(int j = 0;j < res[0].length;j++){
System.out.print(res[i][j] + " ");
运行结果:
好啦~本文到这里也是接近尾声了,希望有帮助到你,整理不易,希望多多三联支持呀~
结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!