HashMap源码解析
一:put方法流程
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//判断数组是否未初始化
if ((tab = table) == null || (n = tab.length) == 0)
//如果未初始化,调用resize方法 进行初始化
n = (tab = resize()).length;
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//该数组下标有数据的情况
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//判断是不是红黑树
else if (p instanceof TreeNode)
//如果是红黑树的话,进行红黑树的操作
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//新数据和当前数组既不相同,也不是红黑树节点,证明是链表
else {
//遍历链表
for (int binCount = 0; ; ++binCount) {
//判断next节点,如果为空的话,证明遍历到链表尾部了
if ((e = p.next) == null) {
//把新值放入链表尾部
p.next = newNode(hash, key, value, null);
//因为新插入了一条数据,所以判断链表长度是不是大于等于8
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
//如果是,进行转换红黑树操作
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
//把下一个节点赋值为当前节点
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
//一定会执行 onlyIfAbsent传进来的是false
if (!onlyIfAbsent || oldValue == null)
//将新值赋值当前节点
e.value = value;
afterNodeAccess(e);
//返回老值
return oldValue;
}
}
//计数器,计算当前节点的修改次数
++modCount;
//当前数组中的数据数量如果大于扩容阈值
if (++size > threshold)
//进行扩容操作
resize();
//空方法
afterNodeInsertion(evict);
//添加操作时 返回空值
return null;
}
二:get方法
public V get(Object key) {
Node<K,V> e;
//hash(key),获取key的hash值
//调用getNode方法,见下面方法
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//找到key对应的桶下标,赋值给first节点
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
//判断hash值和key是否相等,如果是,则直接返回,桶中只有一个数据(大部分的情况)
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
//该节点是红黑树,则需要通过红黑树查找数据
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//链表的情况,则需要遍历链表查找数据
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
三:扩容机制
//扩容、初始化数组
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
//如果当前数组为null的时候,把oldCap老数组容量设置为0
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//老的扩容阈值
int oldThr = threshold;
int newCap, newThr = 0;
//判断数组容量是否大于0,大于0说明数组已经初始化
if (oldCap > 0) {
//判断当前数组长度是否大于最大数组长度
if (oldCap >= MAXIMUM_CAPACITY) {
//如果是,将扩容阈值直接设置为int类型的最大数值并直接返回
threshold = Integer.MAX_VALUE;
return oldTab;
}
//如果在最大长度范围内,则需要扩容 OldCap << 1等价于oldCap*2
//运算过后判断是不是最大值并且oldCap需要大于16
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold 等价于oldThr*2
}
//如果oldCap<0,但是已经初始化了,像把元素删除完之后的情况,那么它的临界值肯定还存在, 如果是首次初始化,它的临界值则为0
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
//数组未初始化的情况,将阈值和扩容因子都设置为默认值
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
//初始化容量小于16的时候,扩容阈值是没有赋值的
if (newThr == 0) {
//创建阈值
float ft = (float)newCap * loadFactor;
//判断新容量和新阈值是否大于最大容量
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//计算出来的阈值赋值
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
//根据上边计算得出的容量 创建新的数组
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//赋值
table = newTab;
//扩容操作,判断不为空证明不是初始化数组
if (oldTab != null) {
//遍历数组
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//判断当前下标为j的数组如果不为空的话赋值个e,进行下一步操作
if ((e = oldTab[j]) != null) {
//将数组位置置空
oldTab[j] = null;
//判断是否有下个节点
if (e.next == null)
//如果没有,就重新计算在新数组中的下标并放进去
newTab[e.hash & (newCap - 1)] = e;
//有下个节点的情况,并且判断是否已经树化
else if (e instanceof TreeNode)
//进行红黑树的操作
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//有下个节点的情况,并且没有树化(链表形式)
else {
//比如老数组容量是16,那下标就为0-15
//扩容操作*2,容量就变为32,下标为0-31
//低位:0-15,高位16-31
//定义了四个变量
// 低位头 低位尾
Node<K,V> loHead = null, loTail = null;
// 高位头 高位尾
Node<K,V> hiHead = null, hiTail = null;
//下个节点
Node<K,V> next;
//循环遍历
do {
//取出next节点
next = e.next;
//通过 与操作 计算得出结果为0
if ((e.hash & oldCap) == 0) {
if (loTail == null)
//将e值放入低位头
loHead = e;
//低位尾不为null,证明已经有数据了
else
//将数据放入next节点
loTail.next = e;
//记录低位尾数据
loTail = e;
}
//通过 与操作 计算得出结果不为0
else {
if (hiTail == null)
//将e值放入高位头
hiHead = e;
//高位尾不为null,证明已经有数据了
else
//将数据放入next节点
hiTail.next = e;
//记录高位尾数据
hiTail = e;
}
}
//如果e不为空,证明没有到链表尾部,继续执行循环
while ((e = next) != null);
//低位尾如果记录的有数据,是链表
if (loTail != null) {
//将下一个元素置空
loTail.next = null;
//将低位头放入新数组的原下标位置
newTab[j] = loHead;
}
//高位尾如果记录的有数据,是链表
if (hiTail != null) {
//将下一个元素置空
hiTail.next = null;
//将高位头放入新数组的(原下标+原数组容量)位置
newTab[j + oldCap] = hiHead;
}
}
}
}
}
//返回新的数组对象
return newTab;
}
四:总结
HashMap是Java中常用的数据结构之一,用于存储键值对的键值对。以下是HashMap的几个常见的使用场景总结:
1. 缓存管理:HashMap可以用于实现缓存功能,将数据存储在HashMap中,以键值对的形式保存。可以通过查询HashMap来获取需要的数据,避免了再次计算或查询数据库的开销。
2. 数据索引:HashMap是一种快速查找数据的数据结构,可以根据键快速找到对应的值。因此,HashMap可以用于构建索引结构,提高数据的检索效率。
3. 字典:HashMap可以用于实现字典功能,将单词与对应的意义作为键值对存储在HashMap中。通过查询键来获取对应的意义,实现快速查找。
4. 频率统计:HashMap可以用于统计数据中各个元素出现的频率。可以将元素作为键,出现的次数作为值,通过对值进行排序或查询,获取频率最高的元素。
5. 数据存储和检索:HashMap是一种高效的数据结构,可以用于存储和检索大量数据。可以根据键快速找到对应的值,提高数据的存取效率。
总之,HashMap可以在需要存储和检索数据的场景中发挥作用,并且由于其高效的存取方式,在大多数情况下,都是一个不错的选择。
Ongwu博客 版权声明:以上内容未经允许不得转载!授权事宜或对内容有异议或投诉,请联系站长,将尽快回复您,谢谢合作!